RPI Engineering

Research

There has never been a more exciting time to obtain a graduate degree in Materials Science and Engineering. Recent breakthroughs in materials research are obliterating traditional boundaries between materials classes and are creating new technological opportunities. We provide graduate students unique opportunities for one-on-one interaction with faculty members at the forefront of their fields and synergistic transdisciplinary interactions with each other as they engage in ground-breaking research.

Materials Processing

Major research programs include fundamental studies of the solidification process and the effect of solidification under reduced gravity on the formation of dendritic structures, and practically oriented programs in the extrusion processing of aluminum alloys. In the latter program, studies of the complex interactions among stress, strain rate, and temperature during forming processes have made it possible to apply advanced software models to the control of metalworking operations. Studies of powder processing have made possible the extrusion processing of composite materials, while research on joining processes has led to synergistic coupling of adhesive bonding and spot welding technology in automotive sheet metal fabrication. Broad efforts focused on the synthesis, processing, and properties of nanostructured materials are expanding the capabilities of materials engineering and nanotechnology into additional areas including ceramics, metals, polymers, composites, and biomaterials. Novel applications of carbon nanotubes for device and chemical applications are under investigation, along with chemical, electrical, and mechanical isolation engineering using nanocomposites.

Materials for Microelectronic Systems

This research spans multiple fields including the development of epitaxial semiconductor materials for new electronic applications, exploration of new semiconductor nanostructural architectures for new nanoelectronic device concepts, development of new methods for material characterization and fabrication at the nanoscale, and materials problems associated with the interconnections between integrated circuit elements. Included are the growth of thin films of metals, semiconductors, polymer and ceramic  materials, advances in the patterning and etching processes necessary for the fabrication of multilayer devices, and the application of state-of-the-art ion and electron beam lithography and microscopy methods.

Glasses and Ceramics

Research efforts focus on factors influencing the useful lifetime of glass components and the effect of environments, especially aqueous environments, on glass failure. In addition to the conventional applications such as windows and bottles, glasses are used as optical components such as optical communication fibers. Specifically, variation of the glass surface structure with time and its influence on glass properties are under investigation. Another emphasis is the development of nonoxide glasses, primarily those based on fluorides, as the transmitting medium in optical fibers for communications purposes.

Nanocomposite Materials

Composite materials are made up of at least two distinct materials that when combined yield superior properties compared to the starting materials. Traditional examples of composite materials are carbon fiber reinforced polymers, glass fiber reinforced polymers, metal matrix composites, engineered woods, etc. Nanocomposite materials are those in which one of the components has a nanoscale dimensions. For example, carbon nanotubes, organoclay sheets (organically modified clay), silica nanoparticles, graphene (individual graphite layers), etc. When nanoscale materials are combined with, for example, polymers, the resulting material provides improvements and control over multiple properties such as electrical, optical, thermal, thermo-mechanical, mechanical, environmental, etc. Research at Rensselaer spans all types of nanoscale materials and their nanocomposites mainly with polymeric materials. Examples include silica, alumina, titania, zinc oxide, organoclay, graphene, single and multi walled carbon nanotube filled polymers.

Computational Materials Science 

A number of MSE faculty focus on computational materials science and have expertise ranging from electronic structure calculation via classical molecular dynamics methods and mesoscale-level techniques, to continuum-level analysis and calculations. The main goal of the computational and theoretical research is to provide a framework for understanding the detailed role of individual parameters such as microstructural size, surface structure and chemistry, nature of defects and their distribution in material synthesis, processing and properties. Specific research areas include mass and heat transport, phase diagram and phase change modeling, chemical and thermal processes in energy materials, and ceramic and metallic glasses.

Nanomaterials

Nanostructured materials are being widely studied by faculty, postdoctoral, and student researchers in the Materials Science and Engineering Department at Rensselaer. For example, polymer nanocomposites containing inorganic nanoparticles or carbon nanotubes are being made that have potential applications that combine novel electrical, optical, or mechanical responses. Rensselaer’s Materials Science and Engineering investigators involved in the NSF-funded Nanoscale Science and Engineering Center (NSEC) for Directed Assembly of Nanostructures have put significant research effort into exploring the design of polymer nanocomposites with controlled dispersions of nanoparticle fillers and how these alter the various material properties of the host polymer. NSEC researchers in the department also investigate the conformation and activity of biopolymers (such as proteins) near (or adsorbed onto) highly curved nanoparticle surfaces and their effects on biological function as well as the ability to create new materials.

Biomaterials

The field of biomaterials focuses on understanding the interactions of materials with biological systems, particularly within the human body, and applying this understanding to advancing human health. Research efforts focus on new methods and materials for automated cell-by-cell fabrication to produce idealized tissue constructs for tissue engineering and regenerative medicine, and to study drug interactions and intercellular signaling. Other efforts involve using cellular machinery in a synthetic environment for bionanofabrication; in particular, immobilized microtubules on AFM tips and motor proteins functionalized with moieties of biomedical interest. Additionally, biosensing is being pursued using cell- and tissue-based biosensors. Magnetic nanoparticles are also being used in combination with tissue constructs to study the effects of inductive thermoablation for cancer therapy.